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ON SLENDER DELTA WINGS WITH LEADING-EDGE SEPARATTION

By Clinton E. Brown and Willlam H. Michsel, Jr.
SUMMARY

The slender~body approximation of linearized campressible flow is
applied to the problem of a delta wing in which flow separation occurs
at the leading edges. The vortex sheets found in the real flow are
approximated by concentrated vortices with feeding lsttices, and a
plausible adaptation of Kelvin's theorem 1s applied to simuiate the
force~free nature of the vortex sheet.

The computations show that leading-edge separation produces an
increase in 1if¢ over that given by the Jones slender-wing theory and
that the 1ift does not vary linearly with angle of attack. Computed
pressure distributions and span loadings are presented and the theo-
retical 1ift results are compared wilth the results of simple force tests
made at & Mach number of 1.9.

INTRODUCTTION

A large number of fluld flows are affected to the first order by
the fluid viscosity and yet do not constitute motions having restrictive
amounts of viscous dissipation. Such fluid flows may be treated as
speclal cases of irrotational or potential flows; thus' their simplifice-
tion and ultimate solution are possible by well-known analytical methods.
Kirchhoff (see ref. 1, p. o) was probasbly the first to suggest this
approach when he proposed that the drag of £lat plates might be estimated
by assuming that the flow separated from the sharp edges and formed a
vortex wake behind the plate. Von Kérmén (see ref. 1, p. 225) later
calculated the asymptotic form of the weke also by assuming that the
dissipation due to viscosity was small. There is 1ittle in the liter-
ature which concerns the details of separated flows; however, Prandtl
(ref. 2) has discussed the formation of spiral vortex sheets at the
edges of flat plates in two dimensions, and Anton (ref. 3) has computed
the position of the spiral as a function of time for a plate suddenly
set in motion. 'The emphasis of references 2 and 3 was primesrily on the
vortex behavior and no attempt was made to estimete the forces acting
on the plate.
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In the present paper, the flow over a slender delta wing is con-
sidered and leading-edge separation is assumed. The physical flow field
over the wing is expected to look like the schematic drawing shown in
figure l(a), at least for vanishing aspect ratios; that is, separation
occurs on the leading edge and produces the two spiral vortex sheets
across which the pressure is continuous but the tangential velocity is
discontinuous. For the slernder delta wing in supersonic flow, the field
is conlcal inasmuch as there is no characteristlic dimension on which to
base variations of any quantity along conical rays through the origin.
Within the limits of slender-body theory, the model in figure 1(a) is
also applicable to subsonic flows. The only contribution of viscosity
in these flows is to fix the separation point at the leading edge for
reasons exactly analogous to those Jjustifying the use of the Kutta
condition at subsonic tralling edges. Solution of the problem consid-
ering the spiral vortex sheet was found to be too difficult; hence, a
simplified model, more amenable to calculation, was adopted. This
model, shown in figure l(b), replaces the gpiral sheet with two concen-
trated line vortices above the wing and two feeding vortex sheets
connecting the source of vorticity (leading edge) and the concentrated
line vortices. It is expected that the results of the simplified-model
calculations should give & fair estimate of the forces acting on the
wing and indicate the important features of flows Iinvolving separated
leading edges.

A peper by legendre (ref. 4) dealing with the same problem has been
discussed by Adams (ref. 5). Adams pointed out that Iegendre's solution
failed to account properly for the forces on the feeding vortex sheet
and thet inclusion of the sheet forces produced a result which in effect
left an uncanceled finite force in the flow field over the wing. This
difficulty was encountered by Dr. Adams and the genlor author in s
preliminary investigation of the problem, and acknowledgment is made
to Dr. Adams for his contributions in the early stages of the work. In
the present paper, the previocusly found difficulty is resolved by use
of more appropriate boundary conditlons. Clarification of this point
1s made in the analysis. Work of essentially the seme result as the
present report has also been discussed by Edwards in reference 6.

Experiments are described which allow comparison of the theoreti-
cally predicted forces with the test results, and a discussion is given
of some factors affecting the overall problem of leading-edge separsa-
tion on sweptback wings. The essential theoretical work reported herein
was presented in a more condensed form in reference 7.
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SYMBOLS
a half-wing span at any chordwise station x
Cy, 1ift coefficient, L

EEE(Wing area)

L 1ift

M Mach number
m apparent mass
1% pressure

D - P
2p/a = local free stream

Zov2
v free-stream velocity
VW disturbance velocities in y- and z-directioms,
respectively
¥ mean normal flow veloclty over vortex
W complex veloclty potentisl
X coordinate along wing in direct;on of free stream
v coordinate along wing normal to free stream
z coordinate normael to wing surface
a anéle of atbtack
T vortex-core strength
€ semivertex angle of wing

imeginary part of 6

@ 3

vector-point coordinate (see fig. 2), & + in

oDl

camplex conjugate of 6, £ -~ iy
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E real part of 6
p free-gtream density
o vector-point coordinate (see fig. 2), y + iz

complex conjugate of o, ¥y - 1z

al

@ disturbance velocity potential
Subscripts:

(o} value at vortex position

1 flow condition with right vortex removed

2
Partial differentiation is indicated by subscripts; that 1s, @ = EL%?.
_ ox

ANATYSIS

Computation of Flow Field

The problem to be congsidered is that of potential flow sbout a
slender delta wing on which leading-edge separation exists; that is,
the streamlines of the flow which wet the wing do not pass from the
lower to the upper surface but rather come from both surfaces and leave
at the leading edge. In reality, such & condition would produce a
conical spiral vortex sheet above the wing, and the boundary conditions
of the problem would be that no fluld pass through the wing surface and
that the pressure across the vortex sheet be continuous. Clearly this
situation represents a difficult problem because the solution must
provide both the shape and strength of the sheet. Past experience with
vortex sheets leads to the hope that the main features of the flow can
be cbtalned by replacing the spiral sheet by & concentrated vortex near
the center of the spiral. For conical flow, however, the net vorticity
in the spiral is linearly increasing in. the downstream direection; hence,
the concentrated vortex must also be of llnearly increasing strength.
The increase in strength must be accomplished by a feeding vortex sheet
in order to satisfy Kelvin's theorem; thus, the model shown in figure 1(b)

seems to be the most sppropriate flow field amensble to simple calculation.

The equation of motion to be satisfled represents a slightly per-
turbed main stream of velocity V eand corresponding Mach number M:

(l"Mz)cP:cx""q)‘}ly""q)zz:O (l)
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vhere @ 1is the disturbance velocity potential and x, y, and =z a&are
Cartesian coordinates fixed to the wing. (The coordinate z 1is
measured perpendicular to the flat wing surface, ¥y 1s tangential *o
the wing surface but normal to the free-streeam velocity vector, and x
is measured in the flow direction along the wing.) If the flow is
further restricted to highly swept wings, the term (1 - M?)Qkx may

be neglected and the equation of motion becomes Iaplace's equation in
y eand =z:

Py + Pgz = O (2)

With this assumption, the well-known slender-body theory can be used;
hence, subsequent discussion will generally be related to the two-
dimensional flow fleld.

Boundary conditions.- The boundary conditions at the plate are
that the plate is solld and hence the normal velocities are zero asnd
that the flow separates tangentially at the plate edges. The boundary
conditions in the field are that the disturbances vanish at infinity
and that the fluid pressure is continuous. TIn the real flow the last
condition is satisfied by the fact that vortex elements lie along
streamiines. The last condition is, however, impossible to satisfy

.with the assumed model and hence must be replaced with one which is
more compatible. The difficulty lies in the presence of the feeding
vortex sheet across which & pressure discontinuity must exist (because
there is a component of the velocity through the sheet), but since the
assumed vortex system represents the true spiral only at a distance,
it is to be expected that, in the small regions near the system, viols-
tion of naturel conditions might occur. It 1s, therefore, necessary
to make the lmst boundary condition less detailed and hence to regquire
only that the integral of pressure around the assumed vortex system
vanish. In simpler terms, as & final condition the assumed vortex
system (feeding sheet and concentrated vortex) must have zero net
force acting since only the wing and not the fluid can sustain forces.
Application of this idee to the model then requires that the forces
on the feeding vortex sheet be cancelled by equal but opposite forces
on the concentrated vortex; thus the concentrated vortex is not force
free ae was assumed in the Iegendre solution (ref. 4). The mathemati-
cael formulation of the preceding boundary condition is as follows: A%
a given station x where the half-wing span i3 2o, introduce the
quentity o =y + 1z, the vector distance to & point (y,z). The
feeding sheet is assumed to be composed of filaments stretching from
the leading edge to the vortex core as shown in figure 1(b). The
vector force on each filement representing the vorticity lying between
X and & point x + dx can be expressed as

d
ipV aikcb - a)
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because I, the vortex-core strength, is a linearly increasing function
of x and hence %5 is constant for all values of x. (Note that
cosines of small angles are taken equal to unity.) The vector force on
the concentrated vortex must be produced by a fluild flow normal to the
vortex and of vector velocity v*. The vector force would be

~ipv*l

Setting the vector sum of the two forces equal to zero in accordance
with the previous discussion thus ylelds

Co -~ & O - 8
v = v &L %o = Ve 2 -~

ax r a (3)

g

where € = and I'=x %£ because the vortex strength is linear in x.

Equation (3) thus requires that the resultant flow velocity normsl to
the concentrated vortex filement be a function of the vortex position
and the wing semivertex angle €. The complex veloclty v¥% 1s, however,
produced by the component of the main stream normal to the concentrated
vortex plus the normal component of the velocity due to the disturbance
velocity potential ¢. The disturbance veloclty is singulsr at the
vortex position; however, v* can be expressed as

V¥ = Ve %? + (v + :r.w)]_w__o,0 (&)
and hence,
= 205
(v + iw)lG=O‘O = VE(T - ) (5)

where the velocity (v + iw)l evaluated at o = 0y represents the
average stream veloclty over the vortex posltion and is easily computed
in the usual menner by subtracting the velocity field of the vortex '
(purely circulatory about o,) from the complex velocity end then by
taking the limit as o approaches o,

Potential solution.- A solution of equation (2) is now sought
which satisfles the aforementioned boundary conditions. The unknowns
in the problem are the location and strength of the concentrated vortex
and the 11ft on the plate. The complex velocity potential W(c,a) is
now introduced and is composed of the sum @ + 1y where ¥ is a
function similar to a stream function but has no physicel significance
with respect to the three-dimensional streamlines of the flow. The
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dependence of the solution on x 1lies only in the relationship between
x and & because, according to the slender-body concept, a gradual
longitudinal deviation from a two-dimensional flow pattern changes the
crossflow veloclty field negligibly. For the same reason, the transverse
vorticity on the wing and in the feeding vortex sheet does not contri-
bute to the complex potential function in the crossfiow plane. The
solution of interest is derived by conformal mapping of the flow past
two symmetrically placed vortices of equal but opposite strength. Thus,
in the 6-plane (see fig. 2)

ir 8 ~ 84 :
(&) 2x % T [: 8 1Vl (6)

Transforming equation {6) to the o-plane by the substitution @ = o - 82

ylelds
2 2 2 2 '
g - - Vo, -
‘[ ° ‘[0 el iva 2. a.2 (D

ir
o) = “ox e 2 2 2 2
JU -a" + ng -a

Equation (7), which was also given by Riabouchinsky (see ref. 8,
p. 254), thus represents the flow normal to an impermeable flat plate
having two symmetrically placed vortices of equal but opposite strengths
located at positions o5 and -Gg-

The boundsry condition that the fiow leave the plate tangentially
at the edges yields the following relationship between I and Va:

r ‘ﬁoa _ a2 ‘/302 _ 82

This equation 18 easlly obtained in the 6-plane by requiring the presence
of a stagnation point at the origin.

The final boundary condition to be spplied (eg. (5)) requires the
calculation of the meen velocity at the vortex location; hence, the .
effect of the complex function W(o) 1less the complex potential funection
of the right-hand vortex must be considered, or

Wi(o) = W(o) + % log,(o - op) (9)

Differentiating equation (9) with respect to o and setting o equal
to o, ylelds the conjugate of the complex veloecity, or (v - iw)l, at

the vortex location.
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Rearranging real and imaginsry parts of equation (5) ylelds

(v - iw)lo‘=oro = Ve<-2-§-9- - 1) (10)

and combining equations (7) to (10) results in

2 2C
-J-'. a = Ve <—3’. - ) ( ll)
2 Jo ( 0‘02 - a2) a

Equation (11) gives the means of finding the vortex location Oy

because the'real and imeginery parts give two equaetions in the unknown
coordinates y, &and z,. Upon separation of equation (11) into its
real and imaginasry parts, the simultaneous equstions were found to be
greatly expanded and not amenable to analytlic solution. Consequently,
the equations were solved in a numerlcal manner by choosing a value of
z, &nd finding the value y, which would give an equal value of the
common paremeter I'/Ve for the two equations. Equation (11) was also
solved epproximately by assuming the absolute value of o, to be nearly
equal to & and expanding the redicals in power series. A solution
was thus obtained which was vaelid to the second order in the param-
0o =~ &

eter —a This simplified approach gives an analytic expression

for the position of the vortex which 1s

ezt -3 - 109" o

The spproximate solution is plotted, bogether with the exact solu-~
tion of equation (11}, in figure 3. Tt is seen that the path of the
vortex center of gravity moves inboard and up as is already known to be
the correct physical motion, and the center of vorticity appears to
became asymptotic to a vertical line at about 84 percent of the semispan.
The agreement between the approximate and exact solutions is excellent.

The varlations of both vortex position and vortex strength with
angle of attack were obtained by making use of the relationship between
z, and Yy, and equations (8) and (11). These computations were per-

formed both approximately and exactly, end the results are given in
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figures 4 and 5. The approximate equations governing the angle of attack
and vortex strength are

oy 20|y, 1(70\%/3
E-h a.j'+2(a) } (13)
and

r__1f; ., 3/20\2/5|e

2xaVe 2 ol 2(&) € (%)

For small angles of attack the vortex cores lie In a plane inclined
to the free streem at an angle three-fourths the angle of attack of
the plate, and hence the vertical position of the cores is almost a
linear function of the angle of attack. Figure 5 indicates that the
vortex strength increases roughly linesrly with angle of attack.

Computation of Iift and Pressure Distribution

Iift results.- The 1ift is most easily obtained from momentum con-
siderations or by camputing the flow of downward momentum through an
infinite plane perpendiculer to the stream at the trailing edge; thus,

L= -va/‘(qaz - Vcr.)dz dy = -ij; ¢ dy (15)

Here the contour is the wing trace plus the cuts conmnecting the wing tips
and the vortex center. Note that ¢, is the velocity component in a
plane perpendicular to the wing surfece and hence contains, in the present.
usage, the upwash contribution of the main stream.

Equation (15) can be expressed in terms of the complex poten-~
tial W(o) because W(o) = ¢ + 1¥ as

L= R.P.[-pV(L W do + L ¥ dz) (16)

wvhere R.P. stands for the real part of the complex function. The inte-
gration of ¥ is zero around the closed curve since ¥ is single
valued in the field and constant on the wing boundary. Furthermore,

the function W(o) 1is analytic in the field external to the contour;
hence, the integral is independent of the path provided that it encloses
‘the original contour.
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The simplest integration is obtained by transforming equation (16)
to the 0-plane; hence,

L = -R.P. pr w(8)dd 4o (17)
a e

Substituting equation (6) gives

pVP(Go + 50) + pVPana® . (18)

or, in lift-coefficient form,

2I'€ B + 50
Cp, = o -——:;——- + 2noe (19)

In this equation, the second term represents the 1ift which would be
obtained in the absence of leading-edge separation (the 1ift as computed
by Jones, ref. 9), and the first term represents the departure from the

8, + 8 '
Jones value. The real function -EL———Q is a function of afe, and

I' is proportional to aVo +times a function of a/e, hence, the 1lift
coefficient may be expressed as oef(a/e) or its equivalent, e2f(a/c).
The 1ift computations for all aspect ratios can therefore be glven by a
single curve which is presented in figure 6 for the exact solution of
equation (19) along with two approximations thereof. The curve labeled
"First order” was alsc obtained by Edwards in reference 6 and is computed
as mentioned in the previous section by expanding the equations in seriles
form ebout the wing tip and retaining only first-order terms in Eliiii.
The second-order result ls obtained by extending the analysis to include
terms of the next highest order. In view of the obvious approximations
involved in the fundemental assumptions of the theory, the small differ-
ences indicated in figure 6 are probably of little consequence. The
analytical expression for the second-order result is

%=, 1&:(%)5/5[1 . (46)2/5] (20)

The Jones results are also included in figure 6 for comparative purposes.
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The calculations predlict an increesed 1ift when leading-edge
sepaeration is present. This result can be shown to hold true for the
case in which the full spiral sheet is trested, and the Jones result
representing a crossflow of minimum kinetic energy also represents the
minimm 1ift or minimum crossflow epparent mass. The 1ift and apparent
mass are directly related according to Munk (ref. 10) and can be
expressed by the equation

L = Veam

where m 1s the additional apparent mass of the flow field in a plane
perpendicular to the main stream at the tralling edge of the wing. The
proof of the minimum-1lift theory is given in the appendix.

Pressure distribution.- The first-order expression for the pressure
coefficient is

2
& _ -29’-2“12-3’—) (21)
a v V2 /z=0

on the wing surface. The second term on the right does not normally
arise when coordinates fixed with respect to the free stream are used;
however, it is necessary when the coordinates are tilted through an angle
of attack, as is the case in the present analysis. This term does not

contribute to the 1ift. The factor @y can be expressed as @, %%
where %§-= €, the semlvertex angle. The velocity potentials appearing
in equation (21) can be cbtained from the complex potential function of
equation (7) by differentiation and by using the definitions

oW

= R.P. ==

% dc
and

ow

= R.P. —

% da

Therefore the pressure coefficient becomes

T L =

Pressure distributions were celculated for a 150 semlivertex-angle
wing, and the results are plotted in figure 7. Results for other aspect
ratios can be easily obtained since, for any given value of a/e, both
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1ift and pressure distributions are proportional to €2. The very-low-
pressure region on the wing upper surface 1s caused by the presence of

the vortex, and the negative pressure peak corresponds approximetely to
the lateral position of the vortex.

Figure 8 shows the corresponding span loasdings which are of interest
in that & congiderable deviation from the ellliptical loading can be seen.

GENERAL PHYSICAL CONSIDERATIONS

The present theory should be considered a limiting one for van-
ishingly small values of the aspect ratlo; hence, its primary usefulness
is to give a better picture of what & real flow deoes in such a limlting
cage. When finlte aspect ratios are contemplated, several important
physical modificetions arise. One of these modifications is evident
from the pressure distributions (fig. 7) where, for e = 15°, the upper-
surface absolute pressure is calculated to be negative even for moderate
Mach numbers. Clearly then, compressibility effects must modify those
flow patterns, pressure distributions, and span loadings considerably
when the pressures approach the vacuum condition. dJust how the modifi-
cation occurs is not fully known; however, in some cases experiments
have shown two distinct types of lesding-edge behavior (ref. 11), one
separated and the other unseparsted, with & special shock system replacing
the vortex sheet.

Another physicel modification which can occur is the breaking-up of
the spiral vortex sheet into two or ‘more spirals or regions of concentrated
vorticity. The occurrence of such a patbern is dependent on the stability
of the vortex sheet formed at the wing leading edge. Testing the three-
dimensional sheet for reaction to small disturbances is an extremely
difficult problem, and even its two-dimensional counterpart, the formation
of a Karmén street behind an impulsively started flat plate, has not been
solved. Finally, a pressure gradient which is conducive to boundary-
layer separation appears to be sltuated near the leading edge of the
triasnguler wing with separated flow. In such a situstion, a secondary
vortex heving a rotational direction opposite that of the maln sheet
would be produced; hence, a modification of the assumed physical-flow
picture would result. (The existence of such a vortex was first pointed
out to the authors by Professor N. Rott of Cornell University.) In the
latter case, the presence of secondary separation should be dictated by
the pressure gredlents normel to the leading edge on. the upper surface;
hence, for wings with finite angles at the edge, a crossflow stagnation
polnt should exist and the sepsration tendency should be more pronounced
than on a flat plate or & cusped-leading-edge profile.
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Of some interest in the present theory are the stream surfaces in
the three-dimensional flow. Cleerly, the streamlines leaving the leading
edge curl up into the center of the vortex spiral; however, one adjacent
streamline passes over the spiral, impinges on the upper surface or
plane of symmetry, and splits into two parts, one part passing almost
straight backward on the upper wing surface and the other part passing
into the vortex-spiral region to form the inner side of the vortex
spiral. Such streamlines form a conicel stream sheet which, when inter-
sected by & plane perpendicular to the free-stream veloclty, looks like
the sketches of figure 9. The surface ray along which the flow impinges
has been calculated for the slmplified model and the results are given
in figure 9. As the angle of attack increases, the impingement point

moves inboard from the leading edge until, at a value of %%w 1, it
moves onto the plane of symmetry.

EXPERIMENTS

Lift end pitching-moment data were cobtained on three wings with
semivertex angles of 5°, 7.5°%, and 10° in a Mach number 1.9 blowdown
jet of the Iangley gas dynamice laboratory. The wings had sharp 10 wedge
alrfoil sections with 9-inch root chords and were semispan models mounted
on a boundary-layer scoop-off plate, the leading edge of which was

l% inches forward of the wing apex. Although the wings were mounted on

the scoop-off plate, a boundary lsyer with & thickness of 3 percent of the
semispan of the smallest wing still existed. ¥From unpublished data, the
effect of this boundary layer on the 1ift results is believed to be
negligible. Forces and moments were obtained from a strain-gage balance
system and tests were conducted at & Reynolds number level of 1.6 X 106
per inch.

The experimentel 1ift date are compared with the Jones slender-wing
theory in figure 10. The deta exhibit the same nonlineasrity as pre-
dicted but fall progressively lower than the theoretical curve as the
apex angle is increased. Compressibility effects as discussed in 2
previous section are believed to account for the decrease in actuasl
1ift over that predicted theoretically. Inasmuch as the compressibility
effects should become less important with decrease in € or Mach number,
the present tests at a constant Mach number of 1.9 should indicate &
decrease in compressibility effects with smaliler values of €. This is
apparently what happens, since the predicted and measured velues tend to
converge as € approaches zero.

Drag-due-to-1ift results are not presented for these flat wings
because the drag equals the 1lift times the angle of attack since there
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is no leading-edge suction. The lack of leading-edge suction in the
theory results directly from the application of the Kutta condition at
the leading edge; hence, the edge velocitles and pressures are required
to be finite. The center of pressure is loceted &t the two-~thirds-root-
chord positlon, as would be expected for any conical flow.

CONCLUSIONS

An approximate theory for the flow over delta wings having separated
flow at thelr leading edges leads to the following conclusions:

1l. The lift~-curve slope of wings of low aspect ratio should be
nonlinear and higher then the lift-curve slope obteined from slender-
wing theory in which leading-edge separation was not agsumed. For the
higher aspect ratios (apex angles), little change in lift~-curve slope
should be expected for the two cases.

2. The span load distribution and wing pressure distribubtion are
markedly affected by the presence of leading-edge separation.

3. Experimental force measurements on very slender delte wings
having semivertex angles of 5°, 7.5°, and 1Q° at a Mach number of 1.9
indicate good agreement between theory and experiment for the most
glender wing with gradually increasing discrepancies as the apex angle
wag increased. The data are as yet insufficient to show whether the

fundamental agsumptions of the theory are satisfied.

Langley Aeronautical Isboratory,
National Advisory Committee for Aeronautics,

langley Field, Va., January 1k, 1955.
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APPENDIX
CAICUIATION OF MINIMUM LIFT OF DELTA WINGS

The complete problem of the wing wilth & spiral vortex sheet is at
present unsolved; however, certain limiting values of the 1lift may be
established from fundamental considerations. For the continuous-spiral-
sheet problem, the 1ift may be written as (eq. (17))

L = -R.P. pr

do
o w(e) 50 ae (A1)
vhere W(8) _now represents the complex potential function and may be
considered to be made up of two parts: one, the Jones solution (ref. 9),
or that corresponding to irrotational motion of the fluid about the flat
plate; and the other, the conbribution of the spiral vortex sheet. The
first part gives the 1ift pvaanaa as in equation (18); the second gives

the 1ift increment pV'%E(éo* + 50*)d7 for each segment dT of the vortex

sheet, where ©6,% + B % 1s the lateral distance from the imaginary axis to

a polnt on the vortex sheet and T 18 a distance measured along the sheet.
The 1lift contributed by the vortex sheet is thus

pv %E(eo* + Bg)ar (a2)

where the integration is performed along the sheet from the origin to
the center of the spiral.

The boundary conditlion requires that the flow separate tengent to
the plate edges. In the 0-plamne this condition is equivalent to
requiring e stagnation point at the origin. Thus, the boundary condition
in the 6-plene can be written as

[—S—dW 9)} =0 (a3)

a6, 86—0

or, in detall, the velocity contribution from the spiral vortex sheet
must oppose the veloclity of the motion at the origin and, hence, must
equal -Va. If these conditions are expressed in terms of the vortex
elements of the sheet, :

B % + B.%
fg;f 2+ 8" 4 = v ()
R
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where R is the distance between a point on the sheet and the origin
and, as in equation (A2), the integration extends over the length of the
spiral sheet.

By camparing equations (A2) and (A4) it can be seen that, if %E
-

is of 1like sign everywhere, the 1lift contribution of the vortex system
must be positive. However, the sign of %£ must be always the same
T

becsuse, in the conical flow, vorticity is generated uniformly at the
leading edge of the wing and the vortex filaments pass back and into the

spiral and chenge only their lateral spacing (and the magnitude of gz)
-

but never cross and thus never change sign. It is proved then that, for
the conditions stated, the vortex spiral contributes only positive lift

over that contributed by the irrotationsl-flow (Jones) solution. Hence,
the Jones 1ift result is the lower limit of 1ift for the complete spiral
problem ag well as for the approximation of the present report.
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{0) Assumed flow field. (b) Approximated flow field.

Figure l.~- Schematic drawings of separated flow over slender delta wings.
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Figure 2.~ Coordinate axes and symbol notations.
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